Problem Analysis Session

SWERC judges

27/01/2024

Statistics

Number of submissions: about 620

Number of clarification requests: 98 (0 answered "No comment.")

A: Ascending hike

Solved by 101 teams before freeze. First solved after 7 min by INSA Rouen.

A: Ascending hike

Problem

Compute the largest span of a contiguous increasing sub-sequence.
Solution - Linear time \& constant space
Compute the current elevation gain

$$
\begin{aligned}
G_{k} & =\max \left\{H_{k}-H_{i}: H_{i}<H_{i+1}<\ldots<H_{k}\right\} \\
& = \begin{cases}0 & \text { if } k=1 \text { or } H_{k}<H_{k-1}, \\
G_{k-1}+\left(H_{k}-H_{k-1}\right) & \text { otherwise },\end{cases}
\end{aligned}
$$

and output the largest G_{k}.

B: Close scores

Solved by 16 teams before freeze. First solved after 22 min by ETH Zurich.

Problem

Given a multigraph G, orient it so as to minimize

$$
\max _{v \in \text { vertices of } G}\left|d^{+}(v)-d^{-}(v)\right|
$$

Solution - Linear time

Suppose G is connected.
If G has a solution with score 0 , every vertex has even degree. Thus, G has an Eulerian cycle.
If G has an Eulerian cycle $u_{1} \rightarrow u_{2} \cdots \rightarrow u_{N} \rightarrow u_{1}$, orient the edge $u_{i} u_{i+1}$ as $u_{i} \rightarrow u_{i+1}$. This achieves score 0 .

B: Close scores

Problem

Given a multigraph G, orient it so as to minimize

$$
\max _{\text {ertices of } G}\left|d^{+}(v)-d^{-}(v)\right|
$$

Solution - Linear time

Suppose G is connected.
G has a solution with score 0 if and only if it has an Eulerian cycle.
Otherwise, we can achieve score 1 as follows:

- Add a vertex connected to vertices of odd degree,
- The obtained multigraph has only even degrees, thus has an Eulerian cycle, thus can achieve score 0 ,
- Removing the added vertex deteriorates the score by 1 .

C: Everyone is a winner

Solved by 106 teams before freeze. First solved after 4 min by Telecom Paris.

C: Everyone is a winner

Problem

Is it possible to give out M medals to K kids such that they each get the same number of medals?

Solution - Constant time \& space

Output 'Yes' in case

$$
M \equiv 0 \quad(\bmod K) .
$$

D: Five in a row

Solved by 20 teams before freeze.
First solved after 41 min by Universta di Pisa.

D: Five in a row

Problem

Find the first five K-dimensional stones that are in a row.

Solution - $O\left(N^{2} K\right)$ time \& $O(N K)$ space

As $N \leqslant 2000$, we cannot use a $O\left(N^{5}\right)$ algorithm to confirm if there are five in a row.

Therefore, we need to use some customized hash table to store all the stones. When reading a new stone, we enumerate all the existing stones as its immediate neighbour in the unbroken line, and see if it can be extended to five stones.

Alternatively, we can use Trie tree to store the stones. Then checking if a stone exists will also take $O(K)$ time. In both cases, the time complexity is $O\left(N^{2} K\right)$.

E: Wooden blocks

Solved by 3 teams before freeze. First solved after 76 min by ETH Zurich.

E: Wooden blocks

Problem

Count configurations obtained by stacking in a stable manner a sequence of N blocks.

Construction strategy:

$$
\text { Area }_{3}=10 \quad 2 x_{3}=5 \quad 2 x \geqslant 3=5
$$

E: Wooden blocks

Problem

Count configurations obtained by stacking in a stable manner a sequence of N blocks.

Construction strategy:

E: Wooden blocks

Problem

Count configurations obtained by stacking in a stable manner a sequence of N blocks.

Construction strategy:

E: Wooden blocks

Problem

Count configurations obtained by stacking in a stable manner a sequence of N blocks.

Construction strategy:

E: Wooden blocks

Problem

Count configurations obtained by stacking in a stable manner a sequence of N blocks.

Construction strategy:

E: Wooden blocks

Induction formula for numerator $X_{i} /$ Area $_{\geqslant i}=2 x_{\geqslant i}$:

$$
X_{i}=X_{i+1}+\delta_{i} \text { Area }_{\geqslant i+1}+2 x_{i} \text { Area }_{i}=X_{i+1}+\delta_{i} \text { Area }_{\geqslant i+1}+w_{i} \text { Area }_{i}
$$

E: Wooden blocks

Induction formula for numerator $X_{i} /$ Area $_{\geqslant i}=2 x_{\geqslant i}$:

$$
X_{i}=X_{i+1}+\delta_{i} \mathrm{Area}_{\geqslant i+1}+2 x_{i} \mathrm{Area}_{i}=X_{i+1}+\delta_{i} \mathrm{Area}_{\geqslant i+1}+w_{i} \text { Area }_{i}
$$

Implementation - Time $\mathcal{O}\left(N^{2} W^{3} H\right)$ \& space $\mathcal{O}\left(N W^{2} H\right)$

Maintain the list of possible $X_{i} \mathrm{~s}$, with multiplicities:
(1) Avoid floating-point numbers

- may lead to WA because of rounding errors
(2) Avoid hashmaps:
- slows things down, may lead to TLE
(3) Just use a good old array!

