C: Metro quiz

Time limit: 5 seconds

Two Olympics spectators are waiting in a queue. They each hold a copy of the metro map of Paris, and they devised a little game to kill time. First, player A thinks of a metro line (chosen uniformly at random among all metro lines) that player B will need to guess. In order to guess, player B repeatedly asks whether the line stops at a metro station of her choice, and player A answers truthfully. After enough questions, player B will typically know with certainty which metro line player A had in mind. Of course, player B wants to minimise the number of questions she needs to ask.

You are given the map of the M metro lines (numbered from 1 to M), featuring a total of N metro stations (numbered from 0 to $N-1$) and indicating, for each line, those stations at which the line stops. Please compute the expected number of questions that player B needs to ask to find the answer, in the optimal strategy.

In other words, given a strategy S, note $Q_{S, j}$ the number of questions asked by the strategy if the metro line in the solution is line j. Then, note

$$
E_{S}=\mathbb{E}\left[Q_{S}\right]=\frac{1}{M} \sum_{j=1}^{M} Q_{S, j}
$$

the expected value of $Q_{S, j}$ assuming that j is uniformly chosen from the set of all metro lines. Your task is to compute $\min _{S} E_{S}$.

If it is not always possible for player B to know which line player A had in mind with certainty, output not possible.

Input

The first line contains the number N. The second line contains the number M. Then follow M lines: the $k^{\text {th }}$ such line contains first a positive integer $n \leqslant N$, then a space, and then n space-separated integers $s_{1}, s_{2}, \ldots, s_{n}$; these are the metro stations at which line k stops. A line stops at a given station at most once.

Output

The output should contain a single line, consisting of a single number: the minimum expected number of questions that player B must ask in order to find the correct metro line, or not possible (in lowercase characters). Answers within 10^{-4} of the correct answer will be accepted.

Limits

- $1 \leqslant N \leqslant 18$;
- $1 \leqslant M \leqslant 50$.

Sample Input 1

```
5
4
3 0 3 4
3 0 2 3
3}223
2 2
```


Sample Output 1

```
2
```


Sample Input 2

```
3
3
1 0
1 1
1 2
```


Sample Output 2

```
1.66666666666667
```


Sample Explanation 2

Ask the first question about station 0 : this is optimal by symmetry of the problem. This lets us distinguish between line 1 , which stops at station 0 , and lines 2 and 3 , which do not. If needed, ask a second question to distinguish between lines 2 and 3 .

Player B asks one question if the answer is line 1, and two questions otherwise. Thus, the expected number of questions she will ask is $(1+2 \times 2) / 3$.

