
Problem Analysis Session

SWERC judges

01/12/2024

Problem Analysis Session 1



Statistics

Number of submissions: about 1574

Number of clarification requests: 243 (about 20 answered “No comment.”)

Problem Analysis Session Statistics 2



H: The king of SWERC

Solved by all teams before freeze.
First solved after 1 min by the University of Artois team
which managed to break our LaTeX slides with their
team name.

0 50 100

0

50

100

150

Time

Su
bm

is
si
on

s
AC
WA
RTE
CE
NO

Problem Analysis Session H: The king of SWERC 3



H: The king of SWERC

Problem

Given a list of names, which one appears the most?

Solution

In a dictionary/hashmap, store for each name the number of times it appears, and increment it
when you encounter a name. Then, output the most frequent name.

Problem Analysis Session H: The king of SWERC 4



H: The king of SWERC

Problem

Given a list of names, which one appears the most?

Solution

In a dictionary/hashmap, store for each name the number of times it appears, and increment it
when you encounter a name. Then, output the most frequent name.
Actually, doing it naively with arrays is fast enough for the time limits.

Problem Analysis Session H: The king of SWERC 4



M: Ook? Ook!

Solved by 140 teams before freeze.
First solved after 3 min by ensipc1.

0 100 200

0

100

200

Time

Su
bm

is
si
on

s
AC
WA
TLE
RTE
CE
NO

Problem Analysis Session M: Ook? Ook! 5



M: Ook? Ook!

Problem

You are given the translation of OK, KO and OOK in a Morse-like language. Can you translate
any word which uses only O and K?

Solution
1 The word OOK translates to a word of size 10, and the word OK to a word of size 4, so the

first four letters of OK correspond to the translation of O: .-.-

2 Thus, the last remaining letters of OK correspond to letter K: .-

3 Given any word consisting of only O and K, we can then concatenate the translations of O
and K

Problem Analysis Session M: Ook? Ook! 6



I: Divination

Solved by 101 teams before freeze.
First solved after 9 min by Schwebler’s Peacocks.

0 100 200

0

100

200

Time

Su
bm

is
si
on

s
AC
WA
TLE
RTE
CE

Problem Analysis Session I: Divination 7



I: Divination

Problem

Determine whether there exists a path in a directed acyclic graph that includes all vertices.

Solution – O(V + E ) time

This problem is equivalent to: whether the topological order is unique.
▶ If there exists such a path, obviously the topological order is unique.
▶ If the topological order is unique, there must be an edge between every pair of adjacent

vertices in the order. Otherwise they can be exchanged, and consequently the topological

order is not unique.

We can use a traditional topological sorting algorithm. In each step, if there are multiple
vertices having in-degree 0, return No. Otherwise, when the topological sorting finishes,
return Yes.

Problem Analysis Session I: Divination 8



G: Guess How the Ballet Will End

Solved by 134 teams before freeze.
First solved after 12 min by morETHanusual.

0 100 200

0

100

200

Time

Su
bm

is
si
on

s
AC
WA
TLE
RTE
CE

Problem Analysis Session G: Guess How the Ballet Will End 9



G: Guess How the Ballet Will End

Problem

Saturating addition: define (for 0 ⩽ x ⩽ R)

x ⊕ y =

{

min(x + y ,R), if y ⩾ 0

max(x + y , 0), if y < 0

Will all integers in [0,R] have the same value after a given list of saturating additions?

Constant time solution

Perform the saturating additions on 0 and R and check whether they have the same value. If
they do, return it.

Problem Analysis Session G: Guess How the Ballet Will End 10



D: Temple Architecture

Solved by 114 teams before freeze.
First solved after 16 min by UPC-1.

0 100 200

0

100

200

Time

Su
bm

is
si
on

s
AC
WA
TLE
RTE
CE
NO

Problem Analysis Session D: Temple Architecture 11



D: Temple Architecture

Problem

For each element in a list H, find the nearest greater element.

Solution – O(N) time

Use monotonic (decreasing) queues to compute the closest greater element on the left/right.

Going left to right, and using an array left, initially set to -1, to store the position of the
closest greater element on the left:

▶ for each H(i), pop the queue until either the queue is empty or a greater element is found.
▶ set left(i) to the value at the end of the queue, if there is one. This is the closest greater

element of the left for H(i).
▶ add i to the end of the queue.

Going right to left, repeat this process for the closest greater element on the right.

In the end, for each i , choose the closest greater element between left(i) and right(i)
(min(i − left(i), right(i)− i)), and compute the sum.

Problem Analysis Session D: Temple Architecture 12



B: Divine Gifting

Solved by 54 teams before freeze.
First solved after 41 min by UPC-1.

0 100 200

0

50

100

150

Time

Su
bm

is
si
on

s
AC
WA
TLE
RTE
CE

Problem Analysis Session B: Divine Gifting 13



B: Divine Gifting

Problem

Given target gift delivery days (di )i=1,...,N , find actual delivery days (ai )i=1,...,N that minimize
∑N

i=1
(di − ai )

2 with the constraints:

there are at most K different ai ’s;

ai ⩾ di for i = 1, . . . ,N.

Solution – O(N2
∗ K ) time

Dynamic programming on state (current gift, number of actual delivery days left) of cardinality
N × K . For each state, try all possibilities for the next delivery day (there are O(N) of them).
It was needed to incrementally compute sums

∑
(dj − A)2 as their upper index and A

increased, in order not to pay an additional N factor in time complexity.

Problem Analysis Session B: Divine Gifting 14



E: Building the Fort

Solved by 13 teams before freeze.
First solved after 116 min by flag[10].

0 100 200

0

50

100

Time

Su
bm

is
si
on

s
AC
WA
RTE
NO

Problem Analysis Session E: Building the Fort 15



E: Building the Fort

Problem

Construct a simple polygon with N fixed vertices and at most 3N total vertices with no interior
points.

Solution



E: Building the Fort

Problem

Construct a simple polygon with N fixed vertices and at most 3N total vertices with no interior
points.

Solution



E: Building the Fort

Problem

Construct a simple polygon with N fixed vertices and at most 3N total vertices with no interior
points.

Solution



E: Building the Fort

Problem

Construct a simple polygon with N fixed vertices and at most 3N total vertices with no interior
points.

Solution

Problem Analysis Session E: Building the Fort 16



E: Building the Fort

Solution



E: Building the Fort

Solution

Problem Analysis Session E: Building the Fort 17



E: Building the Fort

Solution

Problem Analysis Session E: Building the Fort 18



E: Building the Fort

Solution

Group the vertices by their x-coordinates. For each group in ascending x-order:

Problem Analysis Session E: Building the Fort 18



E: Building the Fort

Solution

Group the vertices by their x-coordinates. For each group in ascending x-order:
▶ add a point at (x , 2);

Problem Analysis Session E: Building the Fort 18



E: Building the Fort

Solution

Group the vertices by their x-coordinates. For each group in ascending x-order:
▶ add a point at (x , 2);
▶ add the vertices in ascending y -order;

Problem Analysis Session E: Building the Fort 18



E: Building the Fort

Solution

Group the vertices by their x-coordinates. For each group in ascending x-order:
▶ add a point at (x , 2);
▶ add the vertices in ascending y -order;
▶ add a point at (x + 1, 2).

Problem Analysis Session E: Building the Fort 18



E: Building the Fort

Solution

Group the vertices by their x-coordinates. For each group in ascending x-order:
▶ add a point at (x , 2);
▶ add the vertices in ascending y -order;
▶ add a point at (x + 1, 2).

Close the polygon.

Problem Analysis Session E: Building the Fort 18



E: Building the Fort

Solution

Group the vertices by their x-coordinates. For each group in ascending x-order:
▶ add a point at (x , 2);
▶ add the vertices in ascending y -order;
▶ add a point at (x + 1, 2).

Close the polygon.

Handle edge cases.

Problem Analysis Session E: Building the Fort 18



C: Phryctoria

Solved by 2 teams before freeze.
First solved after 163 min by forETHought.

0 100 200

0

50

100

Time

Su
bm

is
si
on

s
AC
WA
TLE
RTE
CE
NO

Problem Analysis Session C: Phryctoria 19



C: Phryctoria

Problem

Find the shortest glob that matches a string S but does not match a string T .

Problem Analysis Session C: Phryctoria 20



C: Phryctoria

Solution

The shortest glob will be S , possibly with some substrings replaced by wildcards.

abc def
︸︷︷︸

*

ghij kl
︸︷︷︸

*



y

abc*ghij*

Problem Analysis Session C: Phryctoria 21



C: Phryctoria

Solution

We can solve this problem using dynamic programming.

Problem Analysis Session C: Phryctoria 22



C: Phryctoria

Solution

We can solve this problem using dynamic programming.
Let dp[i ][j ][g ] be the shortest glob such that:

the glob matches the first i characters of S ;

the glob matches the first j characters of T , but does not match any smaller prefix of T ;

the glob ends with a wildcard iff g = 1.

Problem Analysis Session C: Phryctoria 22



C: Phryctoria

Solution

We have two possible transitions:

add a wildcard: dp[i + k][j ][1] = dp[i ][j ][0] + 1, for k ⩾ 0;

add a substring S [i . . . i + k]: find the first position p where the substring occurs in
T [j . . .],

▶ if substring is not found, then we have a possible solution;
▶ otherwise we can update dp[i + k][p + k][0] = dp[i ][j ][1] + k , for k ⩾ 0.

Problem Analysis Session C: Phryctoria 23



C: Phryctoria

Solution

We have two possible transitions:

add a wildcard: dp[i + k][j ][1] = dp[i ][j ][0] + 1, for k ⩾ 0;

add a substring S [i . . . i + k]: find the first position p where the substring occurs in
T [j . . .],

▶ if substring is not found, then we have a possible solution;
▶ otherwise we can update dp[i + k][p + k][0] = dp[i ][j ][1] + k , for k ⩾ 0.

We can use Z-algorithm to find the first occurrence of S [i . . . i + k] for each k in O(n) total
time.

Problem Analysis Session C: Phryctoria 23



C: Phryctoria

Solution

We have two possible transitions:

add a wildcard: dp[i + k][j ][1] = dp[i ][j ][0] + 1, for k ⩾ 0;

add a substring S [i . . . i + k]: find the first position p where the substring occurs in
T [j . . .],

▶ if substring is not found, then we have a possible solution;
▶ otherwise we can update dp[i + k][p + k][0] = dp[i ][j ][1] + k , for k ⩾ 0.

We can use Z-algorithm to find the first occurrence of S [i . . . i + k] for each k in O(n) total
time.
Since we have O(n2) states and each state can be updated in O(n) time, the total time
complexity is O(n3).

Problem Analysis Session C: Phryctoria 23



L: The Charioteer

Solved by 4 teams before freeze.
First solved after 192 min by flag[10].

0 100 200

0

5

10

Time

Su
bm

is
si
on

s
AC
WA
RTE

Problem Analysis Session L: The Charioteer 24



L: The Charioteer

Problem

You can steer Phaeton’s chariot, whose speed increases by 1 every second, but you have only
20000 moves.

Determining where the temple is

Let’s denote the maximal absolute value of the temple coordinates by M.
There are many possible solutions.
Start by knowing the x coordinate.
First, go front two times. Then, you will know if the x coordinate is < 2, 2 or > 2.

Problem Analysis Session L: The Charioteer 25



L: The Charioteer

Determining where the temple is

If x > 2, then go front until you start distancing yourself from the temple. When that
happens, you will know the temple’s x coordinate.

If x < 2, then turn left two times and go back, repeating the same strategy of continuing
until you find the temple.

At worst, this takes about O(sqrt(M)) moves.
Since we know the x coordinate, we can easily know the y coordinate of the temple by moving
vertically for one turn.

Problem Analysis Session L: The Charioteer 26



L: The Charioteer

Going to the temple

Notice that some sequence of moves produce specific effects which don’t depend on the current
speed:

FRRRLRRR will make you face right, while preserving your position

RRRRLRRR will make you face back, while preserving your position

RLLLLRRR will make you advance 4 units to the left

LRRRRLLL will make you advance 4 units to the right

This means that we can always go to the temple in O(sqrt(M)) moves, provided that the
position mod 4 is correct.
We can use the sequence LFRRRFLRRR which goes 4 units back and 1 unit left.
This means we can change the position to the correct value modulo 4.
Thus, we can reach the temple in O(sqrt(M)), which is enough for this problem.

Problem Analysis Session L: The Charioteer 27



F: Yaxchilán Maze

Solved by 2 teams before freeze.
First solved after 204 min by UPC-1.

0 100 200

0

5

Time

Su
bm

is
si
on

s
AC
WA
TLE
RTE

Problem Analysis Session F: Yaxchilán Maze 28



F: Yaxchilán Maze

Problem

Find paths to E exits in a N-node maze that changes over T timesteps, with booby-traps that
trigger when they are in a connected component of size > K . Booby-traps release wasps that
spread to currently and newly connected graph nodes.

Solution – O(T log(N)(log(T ) + E )) time

Use a segment tree over the T timesteps. Each segment tree node contains the list of
graph edges that are active during the corresponding interval of timesteps.

Traverse the segment tree using a DFS from root (always going left first).

During traversal, maintain a Union-Find data structure. When entering a segment tree
node, add corresponding graph edges to the Union-Find. When leaving a segment tree
node, rollback added edges.

Problem Analysis Session F: Yaxchilán Maze 29



F: Yaxchilán Maze

Problem

Find paths to E exits in a N-node maze that changes over T timesteps, with booby-traps that
trigger when they are in a connected component of size > K . Booby-traps release wasps that
spread to currently and newly connected graph nodes.

Solution – O(T log(N)(log(T ) + E )) time

The Union-Find must maintain connected component sizes, presence of booby-traps,
bitset of connectivity to the start graph nodes, presence of wasps.

When rolling back Union-Find changes, don’t rollback the connectivity to start nodes
bitset, nor the presence of wasps. Instead, if applicable, propagate them to both newly
connected components formed by rolling back a connection.

The Union-Find data structure does not use path compression, as it adds work during the
rollback phase. It uses only the union-by-rank optimization, hence the log(N) factor.

Problem Analysis Session F: Yaxchilán Maze 30



K: Disk Covering

Solved by 1 teams before freeze.
First solved after 204 min by BaguETHe.

0 100 200

0

5

10

Time

Su
bm

is
si
on

s
AC
WA
NO

Problem Analysis Session K: Disk Covering 31



K: Disk Covering

Problem

Determine if there exists a place completely surrounded by disks, yet not on the disks.

Preprocessing

If two disks intersect, they’re regarded connected. Calculate the connected components.
In the following solutions, we only elaborate on the solution for one connected component.

To avoid the following case, remove all disks that are fully in other disks in advance.

Problem Analysis Session K: Disk Covering 32



K: Disk Covering

Problem

Determine if there exists a place completely surrounded by disks, yet not on the disks.

Solution 1 (incorrect)

We find all the intersection points of any two disks.
Calculate their convex hull.

If there’s any intersection inside the convex hull &
not inside any other disk (other than the two disks
that form it), output Yes and exit.

Otherwise output No.

Problem Analysis Session K: Disk Covering 33



K: Disk Covering

Solution 1 (incorrect)

Counterexample of this solution.

Problem Analysis Session K: Disk Covering 34



K: Disk Covering

Problem

Determine if there exists a place completely surrounded by disks, yet not on the disks.

Solution 2 (incorrect)

For each circle we draw a polygon that is
constructed by all the intersections on it. Given the
nature of these polygons, the vertices of the outline
of their union are all existing intersections.

To get the outline, start at the northernmost
intersection. Then we walk through the boundary
clockwise.

Same as above, check if there’s any intersection not
on the outline & not inside any other disk.

Problem Analysis Session K: Disk Covering 35



K: Disk Covering

Solution 2 (incorrect)

Counterexample of this solution. If we merge the 3 polygons, the green point is a vertex of the
outline but not an existing intersection.

Problem Analysis Session K: Disk Covering 36



K: Disk Covering

Problem

Determine if there exists a place completely surrounded by disks, yet not on the disks.

Solution 3

Based on the previous solution, we can regard the polygons as arbitrary ones, and use
some polygon union algorithms (brute force, sweep line, etc.) to calculate the outline.

However, either they require an overwhelming coding complexity, or their worst case time
complexity is above O(N4), or even both.

Problem Analysis Session K: Disk Covering 37



K: Disk Covering

Problem

Determine if there exists a place completely surrounded by disks, yet not on the disks.

Solution 4 - O(N3) time

For each circle, we pre-process all the intersections
on this circle, and order them according to their
polar angle (relative to the center of that circle).

For each intersection A, it is formed by two circles.
For each of the two circles, among all intersections
on that circle, one is A’s previous, one is A’s next,
in terms of counterclockwise direction.

Then we can find A’s previous arc and next arc on
the outline of union of these two disks.

Problem Analysis Session K: Disk Covering 38



K: Disk Covering

Problem

Determine if there exists a place completely surrounded by disks, yet not on the disks.

Solution 4 - O(N3) time

With the above pre-processing, we can start from
the northernmost arc, and do a clockwise or
counterclockwise traversal, to form the outline.

Note that we shouldn’t start from the northernmost
intersection, as it may not be on the outline.

Like previous solutions, check if there’s any
intersection not on the outline & not inside any
other disk.

Problem Analysis Session K: Disk Covering 39



J: Recovering the Tablet

Not solved before freeze.

0 100 200

0

2

4

Time

Su
bm

is
si
on

s
WA
RTE
CE

Problem Analysis Session J: Recovering the Tablet 40



J: Recovering the Tablet

Problem

Solve a Kakuro with repetitions, while getting as close as possible to the target values.

Verify if it is possible

First, subtract 1 from every white cell, and update the sums accordingly.
Now, all the values are between 0 and 8.
Then, we can create a flow graph to represent the problem.

Problem Analysis Session J: Recovering the Tablet 41



J: Recovering the Tablet

Verify if it is possible

We add a vertex for each horizontal and vertical constraint.
For every white cell, we add two vertices Vin and Vout and connect them with a directed edge
of capacity 8.
Then, connect the horizontal constraint to the corresponding Vin vertices with a directed edge
of capacity infinity.
Connect the vertices Vout with the corresponding vertical constraint vertices with a directed
edge of capacity infinity.

Problem Analysis Session J: Recovering the Tablet 42



J: Recovering the Tablet

Verify if it is possible

Then, connect the source with every horizontal constraint, with an edge of capacity equal to
the constraint sum.
Similarly, connect every vertical constraint with the sink with an edge of capacity equal to the
constraint sum.
Run max-flow algorithm, and check if the edges starting at source and ending at sink are all full.
However, this does not calculate the optimal solution.

Problem Analysis Session J: Recovering the Tablet 43



J: Recovering the Tablet

l1

l2

∞

∞

∞

∞

∞

∞

8

8

8

r1

r2

Problem Analysis Session J: Recovering the Tablet 44



J: Recovering the Tablet

Calculate optimal solution

We apply costs to edges.
Given a white cell, if the target is Ti , then we divide the edge between Vin and Vout in two
edges:

One edge coming from Vin to Vout with capacity Ti and cost −1.

One edge coming from Vin to Vout with capacity 8 − Ti and cost 1.

This prioritizes the edge with lower cost for the first Ti units of flow, thus mimicking the
absolute value function.
Thus, the final answer is the min cost maximum flow + the sum of all Ti ’s.

Problem Analysis Session J: Recovering the Tablet 45



A: Titanomachy

Not solved before freeze.

0 100 200

0

10

20

Time

Su
bm

is
si
on

s
WA
TLE
RTE
CE

Problem Analysis Session A: Titanomachy 46



A: Titanomachy

A - Titanomachy

We are given a more challenging version of the max subarray sum problem, where we can
increase/decrease every value by a constant and query in subsegments.

Solution 1 – O(NQ) time

Naive solution

We can update every segment in O(N)

For every query, use Kadane’s algorithm to solve in O(N).

DPi = max(0,DPi−1 + Ai ),max(DPi )

This won’t pass the time limit however.

Problem Analysis Session A: Titanomachy 47



A: Titanomachy

A - Titanomachy

Notice that the updates are very constrained, and after updating +A and +B , it’s like updating
+A+ B . Therefore, the upgrades can stack. Let’s denote the sum of the upgrades so far as X .

Solution 2 – O(Nlog(N) + Qlog 2(N)) time

Let’s use a segment tree, where for each node we store information about the sum of the node,
the maximum prefix sum, the maximum suffix sum and the maximum sum inside the segment.
Suppose that our segment has length S .
Important observation: for every fixed segment, the sum of this segment is a linear function in
X .

Problem Analysis Session A: Titanomachy 48



A: Titanomachy

Solution 2 – O(Nlog(N) + Qlog 2(N)) time

Therefore, the sum of the node is a linear function, and the maximum suffix/prefix sum is a
piecewise linear convex function, because it is the maximum of a set of linear functions, which
we can maintain with a convex hull data structure.
Since the slope of the line is equal to the length of the segment, the number of different lines is
S , which means we use O(Nlog(N)) memory.
Then, we can calculate the prefix/suffix hulls in O(S), and then merge in O(S) using either
two pointers+max convolution or Minkowski sum.
Each update can be processed in O(1), and each query in O(log2(N)), meaning the total time
is O(Nlog(N) + Qlog2(N)).

Problem Analysis Session A: Titanomachy 49


	
	Statistics
	H: The king of SWERC
	M: Ook? Ook!
	I: Divination
	G: Guess How the Ballet Will End
	D: Temple Architecture
	B: Divine Gifting
	E: Building the Fort
	C: Phryctoria
	L: The Charioteer
	F: Yaxchilán Maze
	K: Disk Covering
	J: Recovering the Tablet
	A: Titanomachy

