Practice Problem Analysis Session

SWERC judges

30/11/2024

Statistics

Number of submissions: about 1194

Number of clarification requests: 145 (about 10 answered "No comment.")

Solved by 101 teams before freeze. First solved after 6 min by **Artois University**.

Problem

Find a value between 1 and 1000 by bisection.

Solution

Interactive problem. Bisect the answer: keep a [high, low] range and ask about the middle of the range, then repeat. Read each answer on stdin and output each guess on stdout.

Example code

```
left = 1
right = 1000
while True:
    middle = (left + right) // 2
    print(middle, flush=True)
    response = input().strip()
    if response == "found":
        break
    elif response == "solid":
        right = middle - 1
    else: # response == "hollow"
        left = middle + 1
```

Example code

```
while (true) {
  int middle = (left + right) / 2;
  cout << middle << endl << flush:
  string response;
  cin >> response;
  if (response == "found") {
    break:
  } else if (response == "solid") {
    right = middle - 1:
  } else {
    assert (response == "hollow");
    left = middle + 1;
```

B: Etymology

Solved by 16 teams before freeze. First solved after 6 min by **Ecole Polytechnique**.

B: Etymology

Problem

Find a string with length L, such that it's the prefix of at least M words.

Solution $1 - O(N^2 * L)$ time

Compare each word with all other words, and see if its prefix (with length L) is also the prefix of at least other M-1 words.

Solution 2 - O(N * L) time

Use a map with key as prefix and value as the number of occurrences. Add the words into the map one by one, and see if there's a prefix with at least M occurrences.

C: Election

Solved by 106 teams before freeze. First solved after 7 min by Institut Polytechnique de Paris.

C: Election

Problem

In a winner-take-all system, given the probability of a candidate winning in each centuria, calculate the probability of winning the whole election.

Solution – O(N * total votes) time

• Dynamic programming. Let f[i][j] be the probability of getting exactly j votes in the first i centuriae. Then we have:

$$f[i][j] = f[i-1][j-w_i] \cdot p_i + f[i-1][j] \cdot (1-p_i)$$

• Finally, the overall probability is $\sum_{j=\lceil total \ votes/2 \rceil}^{total_votes} f[N][j].$

D: Help The Organizers

Solved by 20 teams before freeze. First solved after 1 min by **Ecole Polytechnique**.

D: Help The Organizers

Problem

Find the number of hosts needed for $t_1 + t_2 + t_3$ teams. A host can serve at most 20 teams.

Solution

The solution is $(t_1 + t_2 + t_3 + 19)//20$ where // represents integer division.