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D: Dungeon Equilibrium

Solved by 142 teams before freeze.
First solved after 3 min by UXT.
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D: Dungeon Equilibrium

Statement (summary).

We are given an array a1, . . . , an (0 ≤ ai ≤ n). A level is balanced if, for every monster type x
that appears, the total number of occurrences of x in the array is exactly x. We may delete
elements. Compute the minimum number of deletions needed to make the level balanced.
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D: Dungeon Equilibrium

Key observations.
Each value x is independent of the others; only its own frequency matters.

In a balanced array, value x must appear either 0 times or exactly x times.
Algorithm.

1 Count frequencies f [x] for all x ∈ [0, n].
2 For each x, add f [x] to the answer if f [x] < x, else add f [x] − x.

Complexity. O(n) time (frequency array of size n+1). Slower solutions (e.g., O(n2)) are
allowed.
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E: Expansion Plan 2

Solved by 118 teams before freeze.
First solved after 10 min by TempName.
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E: Expansion Plan 2

Statement (summary).

Initially, only cell (0, 0) is black. With a character 4, the 4 cells touching a black cell
orthogonally become black. With a character 8, the 8 cells touching a black cell orthogonally or
diagonally become black. Given a string s, answer queries (l, r, x, y): is cell (x, y) black after
the commands in substring [l, r]?
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E: Expansion Plan 2

Key observations.
The order of operations does not matter. Only the number of 4s and 8s in the substring
matters.

The black cells are the positions we can reach starting from (0, 0), if we can move
orthogonally (using a 4) and diagonally (using an 8).
A move with an 8 is equivalent to two moves with a 4, in different directions.
The grid is symmetrical. We can assume x, y ≥ 0.

Algorithm.
1 Find the number of 4s and 8s, using prefix sums. Assume there are a 4s and b 8s.
2 Let x := |x|, y := |y|. The necessary and sufficient conditions are

a + 2b ≥ x + y (number of orthogonal steps);
a + b ≥ max(x, y) (number of orthogonal steps in the same direction).

Complexity. O(n + q) time.
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F: Factory Table

Solved by 118 teams before freeze.
First solved after 11 min by Segfault go BRRRR.
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F: Factory Table

Statement (summary).

The k-th unrolled table is [1 · 1, 1 · 2, . . . , 1 · k, 2 · 1, 2 · 2, . . . , 2 · k, . . . , k · 1, k · 2, . . . , k · k]. We
are given a subarray of an unrolled table, with length ≥ 2. Find the minimum possible k.
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F: Factory Table

Key observations.
For each pair of adjacent elements in the subarray, we can determine their row.

If x < y, then they are in the same row, with index y − x.
If x ≥ y, then y is in row y, and x is in row y − 1.

If element x is in row r, it is in column x/r.
Algorithm.

1 For each element, find its row r[i] and its column c[i].
2 Among all the r[i] and c[i], output the largest.

Complexity. O(n) time per test case.
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B: Billion Players Game

Solved by 66 teams before freeze.
First solved after 17 min by UniBois.
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B: Billion Players Game

Statement (summary).

There is a hidden integer x in the interval [l, r]. We are given some offers a1, a2, . . . , an. For
each of them, we can choose to either get x − ai coins, ai − x coins, or nothing. Maximize the
number of coins in the worst case.
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B: Billion Players Game

Optimal strategy. Let’s color ai red if we get x − ai coins.

Lemma
The worst case is either x = l or x = r.
Sketch of proof. After fixing the strategy, the number of coins as a function of x is a straight
line.

Lemma
There exists an optimal strategy where a prefix of elements (after sorting) is red, and a suffix of
elements is blue.
Sketch of proof. Use exchange argument. For example, if y ≤ z, y is white and z is red, then
we get x − z coins. If we make y red and z white, we make x − y coins instead.
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B: Billion Players Game

Lemma
There exists an optimal strategy where (in addition to the previous properties) at most one
element is white.

Sketch of proof. If x ≤ y, and they are both white, we can make x red and y blue instead.

Algorithm.
Try all possibilities for the white element. So there are O(n) candidate strategies.
We can test a strategy in O(1): find the number of coins as a function of x using prefix
sums, and evaluate it in l and r to check the actual worst case.

Complexity. O(n) time per test case (O(n log n) is also possible, for example using ternary
search).
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J: Jewels Building

Solved by 57 teams before freeze.
First solved after 17 min by TempName.
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J: Jewels Building

Statement (summary).

We are given two arrays a1, a2, . . . , an and b1, b2, . . . , bm. Determine whether it is possible to
turn a into b in a finite number of operations.
Operation: pick a subarray of length x ≥ 1 containing equal elements, and replace it with x.
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J: Jewels Building

More powerful operations. Let the operation in the statement be Operation 1.

Operation 2
Operation 2: pick any subarray of length x ≥ 1 (not necessarily containing equal elements), and
replace it with x.
Can be done using operation 1: [al, al+1, . . . , ar] → [1, 1, . . . , 1] → x.

Operation 3
Operation 3: pick any subarray of length x ≥ 1 (not necessarily containing equal elements), and
replace it with any y ≤ x.
Can be done using operation 2: [al, al+1, . . . , ar] → [al, al+1, . . . , al+y−2, x − y + 1] → [y].
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J: Jewels Building

Reverse order. For every element y in the final array,

either it is one of the elements of the initial array (untouched),
or it comes from a subarray of the initial array, which must have length x ≥ y.

3 2 7 8 6 9 5 4

1 8 2 1 4

a

b

SWERC 2025 November 23, 2025 20 / 63



J: Jewels Building

Reverse order. For every element y in the final array,
either it is one of the elements of the initial array (untouched),

or it comes from a subarray of the initial array, which must have length x ≥ y.

3 2 7 8 6 9 5 4

1 8 2 1 4

a

b

SWERC 2025 November 23, 2025 20 / 63



J: Jewels Building

Reverse order. For every element y in the final array,
either it is one of the elements of the initial array (untouched),
or it comes from a subarray of the initial array, which must have length x ≥ y.

3 2 7 8 6 9 5 4

1 8 2 1 4

a

b

SWERC 2025 November 23, 2025 20 / 63



J: Jewels Building

Reverse order. For every element y in the final array,
either it is one of the elements of the initial array (untouched),
or it comes from a subarray of the initial array, which must have length x ≥ y.

3 2 7 8 6 9 5 4

1 8 2 1 4

a

b

SWERC 2025 November 23, 2025 20 / 63



J: Jewels Building

Algorithm.
DP (similar to longest common subsequence).

Instead of replacing a subarray of length x with a single value y ≤ x, we replace a prefix of
length y with a single value y and we throw the rest of the subarray.
dp[i][j][k] = is it possible to match a[1, i] with b[1, j]?

k = 1 when we have just replaced a subarray of length y with a single value y, so we are
allowed to discard elements from a.
k = 0 otherwise.

The transitions require O(1) time.
Complexity. O(nm) time per test case.

SWERC 2025 November 23, 2025 21 / 63



J: Jewels Building

Algorithm.
DP (similar to longest common subsequence).
Instead of replacing a subarray of length x with a single value y ≤ x, we replace a prefix of
length y with a single value y and we throw the rest of the subarray.

dp[i][j][k] = is it possible to match a[1, i] with b[1, j]?
k = 1 when we have just replaced a subarray of length y with a single value y, so we are
allowed to discard elements from a.
k = 0 otherwise.

The transitions require O(1) time.
Complexity. O(nm) time per test case.

SWERC 2025 November 23, 2025 21 / 63



J: Jewels Building

Algorithm.
DP (similar to longest common subsequence).
Instead of replacing a subarray of length x with a single value y ≤ x, we replace a prefix of
length y with a single value y and we throw the rest of the subarray.
dp[i][j][k] = is it possible to match a[1, i] with b[1, j]?

k = 1 when we have just replaced a subarray of length y with a single value y, so we are
allowed to discard elements from a.
k = 0 otherwise.

The transitions require O(1) time.
Complexity. O(nm) time per test case.

SWERC 2025 November 23, 2025 21 / 63



J: Jewels Building

Algorithm.
DP (similar to longest common subsequence).
Instead of replacing a subarray of length x with a single value y ≤ x, we replace a prefix of
length y with a single value y and we throw the rest of the subarray.
dp[i][j][k] = is it possible to match a[1, i] with b[1, j]?

k = 1 when we have just replaced a subarray of length y with a single value y, so we are
allowed to discard elements from a.

k = 0 otherwise.
The transitions require O(1) time.

Complexity. O(nm) time per test case.

SWERC 2025 November 23, 2025 21 / 63



J: Jewels Building

Algorithm.
DP (similar to longest common subsequence).
Instead of replacing a subarray of length x with a single value y ≤ x, we replace a prefix of
length y with a single value y and we throw the rest of the subarray.
dp[i][j][k] = is it possible to match a[1, i] with b[1, j]?

k = 1 when we have just replaced a subarray of length y with a single value y, so we are
allowed to discard elements from a.
k = 0 otherwise.

The transitions require O(1) time.
Complexity. O(nm) time per test case.

SWERC 2025 November 23, 2025 21 / 63



J: Jewels Building

Algorithm.
DP (similar to longest common subsequence).
Instead of replacing a subarray of length x with a single value y ≤ x, we replace a prefix of
length y with a single value y and we throw the rest of the subarray.
dp[i][j][k] = is it possible to match a[1, i] with b[1, j]?

k = 1 when we have just replaced a subarray of length y with a single value y, so we are
allowed to discard elements from a.
k = 0 otherwise.

The transitions require O(1) time.

Complexity. O(nm) time per test case.

SWERC 2025 November 23, 2025 21 / 63



J: Jewels Building

Algorithm.
DP (similar to longest common subsequence).
Instead of replacing a subarray of length x with a single value y ≤ x, we replace a prefix of
length y with a single value y and we throw the rest of the subarray.
dp[i][j][k] = is it possible to match a[1, i] with b[1, j]?

k = 1 when we have just replaced a subarray of length y with a single value y, so we are
allowed to discard elements from a.
k = 0 otherwise.

The transitions require O(1) time.
Complexity. O(nm) time per test case.

SWERC 2025 November 23, 2025 21 / 63



A: Adjusting Drones

Solved by 50 teams before freeze.
First solved after 21 min by ENS de Lyon 3.
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A: Adjusting Drones

Statement (summary).

Given an array, on each operation we increase simultaneously by 1 all the elements which are
equal to some previous element. After how many operations every element appears at most k
times?
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A: Adjusting Drones

The order of the elements does not matter. So let’s sort the elements in increasing order. Also,
we have the freedom to choose the tiebreaker rule (i.e., which elements are increased by 1).

Fixed point.
Assume the process stops when all the elements are distinct. Let’s find the configuration
b1, b2, . . . , bn at that point. If some elements are equal, the rightmost does not increase.
From right to left, if the initial value is ai, then bi is the smallest x ≥ ai not present in b yet.
If we look at a single element over time, it has values ai, ai + 1, . . . , bi, bi, . . . , bi.
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A: Adjusting Drones
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 3 3 3 4 5 5 6 6 6 6 6 7 7 7 13 13
1 4 4 3 4 6 5 7 7 7 7 6 8 8 7 14 13
2 5 5 3 4 7 5 8 8 8 8 6 9 8 7 14 13
3 6 6 3 4 8 5 9 9 9 9 6 9 8 7 14 13
4 7 7 3 4 9 5 10 10 10 10 6 9 8 7 14 13
5 8 8 3 4 10 5 11 11 11 10 6 9 8 7 14 13
6 9 9 3 4 11 5 12 12 11 10 6 9 8 7 14 13
7 10 10 3 4 12 5 13 12 11 10 6 9 8 7 14 13
8 11 11 3 4 13 5 14 12 11 10 6 9 8 7 14 13
9 12 12 3 4 14 5 15 12 11 10 6 9 8 7 14 13
10 13 13 3 4 15 5 15 12 11 10 6 9 8 7 14 13
11 14 14 3 4 16 5 15 12 11 10 6 9 8 7 14 13
12 15 15 3 4 16 5 15 12 11 10 6 9 8 7 14 13
13 16 16 3 4 16 5 15 12 11 10 6 9 8 7 14 13
14 17 17 3 4 16 5 15 12 11 10 6 9 8 7 14 13
15 18 17 3 4 16 5 15 12 11 10 6 9 8 7 14 13
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A: Adjusting Drones

Binary search.
The maximum number of occurences of one element does not increase after one operation
(if value x appeared ≤ k times, it produces ≤ k − 1 copies of x + 1, and at most one other
copy of x + 1 survives).

So we can binary search the answer. Using the process described earlier, we can retrieve the
configuration after m moves in O(n).

Complexity. O(n log n) time (there also exist “magical” O(n) solutions!)
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C: Chamber of Secrets 2

Solved by 70 teams before freeze.
First solved after 41 min by Ctrl+Alt+DelETHe.
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C: Chamber of Secrets 2

Statement (summary).

We have n arrays of length m built as follows:
1 start from a secret key [p1, p2, . . . , pnm/2] (a permutation);
2 concatenate p with itself;
3 split the resulting array into n consecutive blocks, i.e., disjoint subarrays of length m;
4 shuffle these arrays.

Find a possible secret key [p1, p2, . . . , pnm/2].
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C: Chamber of Secrets 2

Case 1: n is even.
The subarrays in the first half correspond exactly to the subarrays in the second half.

Each subarray appears twice. We can rearrange and print them in any order.

5 6 3 4 1 2 5 6 3 4 1 2
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C: Chamber of Secrets 2
Case 2: n is odd.

Split each subarray into two halves.

We have constraints of type “the first half must be followed by the second half”. These
constraints make a cycle.
Visit the subarrays in the cycle, starting from any of them.

3 2 7 8 6 9 5 4 10 1 3 2 7 8 6 9 5 4 10 1

3 2 7 8 6 9 5 4 10 1

Complexity. O(nm) time per test case.
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G: Git Gud

Solved by 15 teams before freeze.
First solved after 76 min by Team 2.
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G: Git Gud

Statement (summary).

We want to make our skill ≥ n using a limited amount of robocoins. We can perform operations
(y, l) with cost l and additional cost 1000 if y is larger than the previous one. The operation
makes our skill y + l if it was exactly y.
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G: Git Gud

Checker. As a warm-up, think about how we would write the checker for this problem.

We can store the set of all the possible skills (initially, all integers in [1, n]), and perform
operations in O(1) (we have to remove y and insert y + l).
As a consequence, the optimal value of l is the smallest one such that y + l is already in the set.
Since we know how to determine the optimal l for a fixed y, let’s denote the operations only
using y.

Naive strategy 1.
Use operations 1, 2, . . . , n − 1. Unfortunately, they are too “increasing”.

Naive strategy 2.
Use operations n − 1, n − 2, . . . , 1. Unfortunately, they are too long.
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G: Git Gud

Better strategy.
Fix our skill modulo 2 using operations n − 1, n − 3, n − 5, . . .

Fix our skill modulo 4 using operations n − 2, n − 6, n − 10, . . .

. . .

The cost is O(n log n) (≈ log2 n layers, O(n) per layer). We use very few “increasing”
operations (1 per layer): we can try to use more (and maybe use less layers).

Generalization.
Fix our skill modulo 3 using operations n − 2, n − 5, n − 8, . . . , n − 1, n − 4, n − 7, . . .

Fix our skill modulo 9 using operations n − 6, n − 18, n − 30, . . . , n − 3, n − 12, n − 21, . . .

. . .

Now we have ≈ log3 n layers and 2 “increasing” operations per layer.
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G: Git Gud

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 26 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 23 24 26 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20 21 23 24 26 27
1 2 3 4 5 6 7 8 9 10 11 12 14 15 17 18 20 21 23 24 26 27
1 2 3 4 5 6 7 8 9 11 12 14 15 17 18 20 21 23 24 26 27
1 2 3 4 5 6 8 9 11 12 14 15 17 18 20 21 23 24 26 27
1 2 3 5 6 8 9 11 12 14 15 17 18 20 21 23 24 26 27

2 3 5 6 8 9 11 12 14 15 17 18 20 21 23 24 26 27
2 3 5 6 8 9 11 12 14 15 17 18 20 21 23 24 27
2 3 5 6 8 9 11 12 14 15 17 18 20 21 24 27
2 3 5 6 8 9 11 12 14 15 17 18 21 24 27
2 3 5 6 8 9 11 12 14 15 18 21 24 27
2 3 5 6 8 9 11 12 15 18 21 24 27
2 3 5 6 8 9 12 15 18 21 24 27
2 3 5 6 9 12 15 18 21 24 27
2 3 6 9 12 15 18 21 24 27

3 6 9 12 15 18 21 24 27
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G: Git Gud

3 6 9 12 15 18 21 24 27

3 6 9 12 15 18 24 27

3 6 9 15 18 24 27

6 9 15 18 24 27

6 9 15 18 27

6 9 18 27

9 18 27
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G: Git Gud

9 18 27

18 27

27
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G: Git Gud

Generalization.
If we use modulo m, we have ≈ logm n layers, each with cost ≈ n, and m − 1 “increasing”
operations per layer, each with cost 1000.

We should choose m ≈ 3
√

n. So the total cost is around

(logm n)(n + 1000m) = 3(n + 1000 3√n) < 4n

if n = 250 000.
If n is smaller, we can pretend it is 250 000.
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L: LFS

Solved by 11 teams before freeze.
First solved after 128 min by Northern Spy.
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L: LFS

Statement (summary).

Given a string s, answer q queries: what is the maximum length of a substring appearing with
maximum frequency in the substring [l, r]?

SWERC 2025 November 23, 2025 40 / 63



L: LFS

Key observations. Let α = 26 (size of the alphabet).

The maximum frequency is reached by a substring which is 1 character long.
A substring which ends with a character c can be extended to the right if and only if
s[r] ̸= c, and every occurrence of c in [l, r] is followed by the same character d.
Make an edge for every such pair (c, d) of characters. There are O(α) such pairs (for each
c, there exists at most one valid d).
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L: LFS

Algorithm.
Switch point from some position i: next position j such that the following character is
different (i.e., s[i] = s[j] but s[i + 1] ̸= s[j + 1]).

For each character, create prefix sums (to count the number of occurrences), an array to
find the next occurrence, and an array to find the switch point.
For each candidate edge, check whether the switch point is > r.
Find the largest connected component.
If we process the queries offline (increasing r), the implementation might become easier.

Complexity. O((n + q)α) time (additional O(log n) factors with low constant are allowed).
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I: Isaac’s Queries

Solved by 2 teams before freeze.
First solved after 235 min by Segfault go BRRRR.
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I: Isaac’s Queries

Statement (summary).

There is a hidden array, generated randomly. For each subarray [l, r], we want to find the most
significant bit of al ⊕ al+1 ⊕ . . . ⊕ ar. We can ask the answer for some [l, r], with cost 1

r−l+1 .
Find all the answers with limited total cost.
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I: Isaac’s Queries

Let g(l, r) be the answer for the subarray [l, r].

Saving queries (I).
If g(l, m) ̸= g(m + 1, r), then g(l, r) = max(g(l, m), g(m + 1, r)). Otherwise, we know that
g(l, r) < g(l, m).

Saving queries (II).
We can generalize for m outside [l, r].
If x < l and g(x, l − 1) ̸= g(x, r), then g(l, r) = max(g(x, l − 1), g(x, r)).
If y > l and g(l, y) ̸= g(r + 1, y), then g(l, r) = max(g(l, y), g(r + 1, y)).
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I: Isaac’s Queries

Let g(l, r) be the answer for the subarray [l, r].

Solution 1.
For r from 1 to n, for l from 1 to i, find g(l, r) using the previous queries if possible, otherwise
ask it.

Cost of Solution 1.

In order to ask g(l, r), it must be less than g(1, r), g(2, r), . . . , g(l − 1, r). So the probability of
asking it is O(1/l). So the average cost is

O

 ∑
1≤l≤r≤n

1
l(r − l + 1)

 = O


 ∑

1≤k≤n

1
k

2
 = O(log2 n)

In practice, the average cost is ≈ 20.
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I: Isaac’s Queries
In the following solution, we apply prefix XOR. So instead of al ⊕ al+1 ⊕ . . . ⊕ ar we are
interested in al ⊕ ar.

Solution 2.
Let’s build a trie containing the ai. Specifically, each node corresponds to a prefix of the binary
representation, and contains positions i such that ai has that prefix. It is not possible to recover
the ai uniquely, but we can set bits to 0 without loss of generality if they do not impact any
queries.
Then, in order to calculate the answer for some (l, r), we have to find the LCA of the
corresponding nodes.
Suppose we are in some node of the trie containing k values. We want to recurse into two
children, depending on the next bit. This is possible by asking the query.
Specifically, suppose that a node contains positions p1, p2, . . . , pk. In order to recurse, we need
to ask queries between some pairs. We choose this pairs greedily, by calculating a minimum
spanning tree (the edges have cost 1

pj−pi+1).
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I: Isaac’s Queries

Cost of Solution 2.

The same analysis of Solution 1 gives an upper bound. However, this solution is much more
efficient (average cost ≈ 9).
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H: Hyper Smawk Bros

Not solved before freeze.
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H: Hyper Smawk Bros

Statement (summary).

You and Bob want to make an integer n ≤ 0. You alternately subtract an integer in [1, m] from
n, but it must be different from the one just chosen by the opponent. Given n, m, determine
whether you can force a win. Answer multiple test cases.
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H: Hyper Smawk Bros
Let the starting number be N .

Losing positions.
Let (n, l) (0 ≤ m) be losing if you lose if it’s your turn, the current integer is n, and you cannot
subtract l (if l is 0, you can subtract everything).

Evil n.
Let n be evil if (n, 0) is losing (i.e., you lose even without constraints on the number you
subtract).

Bound on the evil n (I).
Claim: there are O(N/m) evil n. Specifically, let v1, v2, . . . , vk be the evil n ≤ N . Then,
vi − vi−1 ≥ m + 1 (otherwise you would be able to move from an evil n to another,
contradiction).
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H: Hyper Smawk Bros

Structure of losing positions and solution in O(t(N + m)).
If (n, l) is losing, then (n + l, l′) with l′ ̸= l is winning. This means that the number of losing l
for a fixed n is either 0, 1, or m + 1. Let’s call n “good”, “neutral”, and “evil”, respectively.

Note that the losing states are O(N + m) in total.

Even m.
For even m, only the multiples of m + 1 are evil. In order to win, you can ensure that the last
two moves have sum m + 1. Since m + 1 is odd, the last move will never be the same as the
second last.

From now, let’s only consider odd m.
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H: Hyper Smawk Bros

More structure.
There are three types of losing states.

(n, l) with f(n) = 0.
(n, f(n)).
(n, f(n)/2) with f(n) = m + 1.

This is a consequence of the slow solution described above. If s is evil:
the losing states (s, l) propagate to n in [s + 1, s + m];
only the losing state (s + m+1

2 , m+1
2 ) can propagate to (s + m + 1, m+1

2 ), and in that case
s + m + 2 is evil.

So s + m + 1 cannot be good (it is either neutral or evil).

Bound on the evil n (II).
Let v1, v2, . . . , vk be the evil n ≤ N . Then, m + 1 ≤ vi − vi−1 ≤ m + 2.
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H: Hyper Smawk Bros

n losing last moves l (if m = 9)

21 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
22 [1]
23 []
24 []
25 []
26 [5]
27 [6]
28 []
29 [8]
30 [9]
31 [5]
32 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
33 []
34 [2]
35 [3]
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H: Hyper Smawk Bros

Our goal.
Let v1, v2, . . . , vk be the evil n ≤ N . We want to find them in O(k) = O(N/m). In this way,
we can solve the problem for all m in O(

∑
1≤m≤M N/m) = O(N log M).

Finding vi+1.
We have v1, v2, . . . , vi, and we want to find vi+1 in O(1). It is enough to check whether
vi + m + 1 is evil. It’s easier to check whether it is not evil, i.e., whether there exists a winning
move.
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We have v1, v2, . . . , vi, and we want to find vi+1 in O(1). It is enough to check whether
vi + m + 1 is evil. It’s easier to check whether it is not evil, i.e., whether there exists a winning
move.

Let’s start from some n which satisfies vj ≤ n ≤ vj+1. A winning move must ensure that the
opponent cannot move to an evil state (necessary condition). So there are three candidate
winning moves.

1 Subtracting n − vj + 1 (so that the opponent is too far from vj−1; this can only work if
vj − vj−1 = m + 2).

2 Subtracting n−vj

2 (so that the opponent would have to subtract n−vj

2 again to reach vj).
3 Subtracting n−vj−1

2 (so that the opponent would have to subtract n−vj−1
2 again to reach

vj−1).
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H: Hyper Smawk Bros

Finding vi+1 efficiently.
The previous observation provides a recursive function which can call itself up to 3 times.

The recursive function answers the question “can we win starting from (n, n − vj)?” (i.e., it is
forbidden to make the move which would win immediately). This is equivalent to “is n good or
neutral?”
We want to make the average number of recursive calls less than 1, so that the function
terminates in O(1).

1 We do not need the first call, because vj−1 + m + 1 is neutral (proved before).
2 The second call happens with probability ≲ 1/2 (n − vj must be even, and the first case

must not apply).
3 The third call happens with probability ≲ 3/8 (n − vj−1 must be even, the first case must

not apply, and the second call must not succeed).
So the function calls itself ≲ 7/8 times on average. This is fast enough for all m (it can be
tested locally).
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K: Keygen 3

Not solved before freeze.

SWERC 2025 November 23, 2025 58 / 63



K: Keygen 3

Statement (summary).

Print all the bitonic permutations of length n with m cycles. If there are more than 2000 of
them, print 2000 of them.
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K: Keygen 3

Minor modification.

For convenience, let’s find “anti-bitonic” permutations instead (decreasing, then increasing).

There is a bijection between bitonic and anti-bitonic permutations.

vector <int > f(vector <int > p) {
int n = p.size ();
reverse (p.begin (), p.end ());
for (auto &u : p) u = n - u + 1;
return p;

}
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K: Keygen 3

Let’s divide into three cases:

1 n ≤ 18;
2 n ≥ 19, n − m ≥ 10;
3 n ≥ 19, n − m ≤ 9.

n

m
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K: Keygen 3

n ≤ 18.
We can find all the anti-bitonic permutations and test them in O(n · 2n).

Transforming a solution to (n, m) into a solution to (n + 1, m + 1).
Just append n + 1 at the end.

Transforming a solution to (n, m) into a solution to (n + 1, m).
Append n + 1 at the end, and swap p1 with p1 + 1.

n ≥ 19, n − m ≥ 10.
First, solve (18, i) for 1 ≤ i ≤ 8 (for each i, we have ≥ 2000 solutions). Transform these
solutions into solutions to (n, m).
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K: Keygen 3

i

p[i]

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

p[i] = i

n ≥ 19, n − m ≤ 9.
p1, p2, . . . , pn must have at least n − 9
cycles, so it must have at least n − 18 fixed
points (i.e., pi = i).
The permutation structure is
[p1, . . . , p1 + 1, p1 + 2, . . . , n]: the
highlighted square has at most 1 fixed point,
so there are at most n − p1 + 1 fixed points.
Therefore, p1 ≤ 19, and we can iterate over
all such permutations.
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